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Outline

• Background – Garaud et al (2010) convection and turbulence closure

• Aims and objectives – a data-derived approach

• Methods
• Data generation – Rayleigh-Bénard convection Dedalus3 model
• Application of machine learning using SINDy

• Results
• Recovering the governing equations

• Next steps
• Recovering the Garaud et al turbulence closure coefficients
• Looking for variations and alternatives
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Background

• Garaud, Ogilvy, Miller & Stellmach1 proposed a closure model for transport 
of entropy and momentum in astrophysical turbulence, intended for 
application to rotating stellar convective regions

• Akin to the Reynolds-stress models of turbulent flows in the engineering 
community (e.g. Pope 2000), Garaud et al take a similar approach

• The approach starts from a more fundamental description that allows 
phenomena such as the Λ-effect to emerge in a natural way from 
elementary considerations

• Garaud et al. hope this may allow for a more unified approach toward 
astrophysical turbulence

Lofty aims… 31 citations to date
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Background
• In the Boussinesq approximation, 

the fluid governing equations are:

• Dynamical variables are the 
velocity u, density ρ, pressure p
and temperature T

• A simple, static base state is possible when temperature is uniform and 
the pressure gradient balances gravity, i.e. 
where p0 is a reference pressure

• To examine departures from that state, Garaud et al.1 define:
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Background
• The governing equations then become: 

• Separating the dynamical variables 
into mean and fluctuating parts, 
e.g.
the mean parts of the governing
equations are then:

• Where is the Reynolds tensor representing the turbulent stress 
and represents the turbulent heat flux density.

• represents the temperature variance   
5
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Background
• The fluctuating parts of 

the governing equations
are:

• From the above, it is possible to obtain ,  and        and thereby 
close the system of mean equations to obtain…
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…after a little light algebra…
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… exact equations for the evolution of the mean Reynolds stresses, 
turbulent heat flux density and temperature variance
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Background

• Garaud et al. retain the exact 
forms of the LHSs and propose 
a simple closure for the RHS:

• C1, C2, C6 and C7 are positive
dimensionless coefficients of
order unity.

• Justification of the non-linear terms follows Ogilvie 20032

• The term involving C1 causes a dissipation of turbulent kinetic energy

• The term involving C2 redistributes energy among the components of

• The C6 and C7 terms are related to heat transport by simple analogy

92 MNRAS 340 969 2003



Background

Garaud et al. estimate the parameters by comparison to numerical 
simulations and laboratory experiments

• Garaud & Ogilvie 20053 estimated
from pipe flow data and Couette-Taylor data  

• Considering the universal profile of convection 
from a wall, experimental data on the 
near-wall profiles yields:

• Similarly, universal profiles away from the wall can also
be used in conjunction with numerical and laboratory
experiments to constrain C6 and C7:

103 JFM 530 145 2005



Project aims

• To use machine-learning to obtain values of these coefficients from a 
purely data-driven estimation

• Objective 1: Obtain the governing equations and validate the ML approach

• Objective 2: Estimate these coefficients by applying this validated approach

• Explore variations across the flow domain – in the bulk or at the 
boundary

• Explore other possible turbulence closure terms.
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Data: Rayleigh-Bénard convection

2D horizontally-periodic Rayleigh-Bénard convection

• Non-dimensionalised using the box height and free-fall time

• Temperature Ө=1 at z=0, 
Ө=0 at z=1

• Ө(t=0) = ϵ . z(1-z) + (1-z)
• ϵ is a random seed of magnitude 10-5

• z(1-z) damps noise at walls

• (1-z) linear background

• Stress-free boundary condition
at top and bottom

• Rayleigh numbers R=106,108,1010

• Prandtl number P=1 12

x

z

Ө=1, w=0, du/dz=0

u = u (u,w) = 0

Ө=0, w=0, du/dz=0



Data: R-B convection

• Numerical method:  Dedalus v.3
• Flexible framework for solving PDEs
• Open source, widely-used, well supported, community of users
• 1024 real space Fourier points in (Nx) in the x direction Lx=4

• 384 real space Chebyshev points in (Nz) in the z direction Lz=1

• RK443 timestepping scheme
• Memory heavy, but has proved more accurate

• Run to t=50 to achieve steady state, continue to t=75 or t=100 to obtain data 
for machine-learning

• Monitor Reynolds number, maximum Nusselt number, total and average K.E.
• Output

• Snapshots of u, w, p, Ө, vorticity
• Vertical profiles, integrated along x, of Rij, Fi, Q, u, w, Ө
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R-B convection, Ra 106

Once steady, Nusselt number varies in the range 10 to 20, implying relatively laminar convection
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Machine-learning

• SINDy: Sparse Identification of Non-linear Dynamics
• Generate and structure some data from a system

• Build a library of candidate terms that could describe the dynamics

• Apply some sparse optimisation to uncover the 
fewest dynamic terms needed to describe that data
• Physics-informed: constrain the library (or not!) 

from physical knowledge to reveal sparse solutions 
that are physical by construction

• Interpretable, generalizable models  - far from image training

• SINDy relies on having fairly clean data rapidly sampled in time such that 
it’s possible to discern between the effects of different library terms
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SINDy
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• Essentially, a machine learning algorithm 
that extracts dynamical systems models 
from time series data to obtain a sparse 
minimalistic model

• Rests on the idea of very few RHS terms 

• Extends DMD to add possible nonlinear terms 

• Objective: find fewest terms in the library 
that describe the x, y and z measurements. 
i.e. fewest columns combining to equal data

• 20yrs ago: a combinatorial brute force search

• Now a common process in optimisation 
- choice of sparse optimization algorithms

• Essentially learn the structure of your dynamical 
system and the parameters of the active terms

• By imposing this sparsity condition and by trying to find the sparsest model possible, that explains 
the observed data, SINDy tends to discover the actual true dynamics that generated the data in 
the first place

• PDE case: build a regression problem that is a generalised linear problem where we try to 
represent the time derivative of some quantity as a sparse combination of a library of candidate 
partial derivatives and nonlinear products of partial derivatives

. . .



SINDy

• Weak formulation PDE method
• Provides orders of magnitude better robustness to noise

• Elimination of pointwise derivative approximations via the weak form enables 
effective machine-precision (NOTE!) recovery of model coefficients 

• Involves integrals instead of differentiation

• By performing integration by parts, the action of derivatives can be 
transferred from the noisy data onto the smooth weight, dramatically 
decreasing the effect of noise on terms involving higher order derivatives

• A thresholding procedure removes dynamically irrelevant terms. Typical 
values of thresholding parameter are around 0.05
• Removing terms that contribute/model less than 0.05*weighted system
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Data selection and structuring
• Simple, surely? Not quite… 

• Needs to show full dynamic range of interest to disambiguate model complexity
• 4D (2D+time+variable) array of u, w, P, T. 
• 2D array of grid points. 1D vector of time points

• 28 samples per period is enough to obtain correct model with <1 period. 25

for 2 periods. We have started with ~5x102 across 2 periods: high risk
• Thankfully Dedalus gives us almost noiseless data – numerical precision 

level – balances low sampling rate
• We can rapidly increase the sampling rate if necessary, but RAM demands will be HUGE!
• Already at 100Gb RAM or more per model

• Transpose Dedalus HDF5 data order (time,x,z) -> (x,z,time)
• Dedalus model is Fourier-Chebyshev in space

• SINDy theoretically takes any spatial gridding
• Painful experience tells us uniform gridding is better to work with
• Interpolate from Chebyshev to Fourier: interp2d from scipy.interpolate
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Library matrix of candidate terms

• Variables: u(x,z), w(x,z), P(x,z), T(x,z) (4 terms)

• First order partial derivatives (8 terms)

• Second order partial derivatives (16 terms 12 terms - chain rule)

• Products of u, w, P, or T multiplied by every first order partial derivative 
term (32 terms)

• Products of u, w, P or T multiplied by second differential (48 terms)

A grand total of 104 possible terms includes all the terms 
in the governing equations

If we’re looking for 15 terms, equates to a 104C15 possible set of models:
104C15 = 4.7709281 x 1017!
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Physically constraining the library

• Enforce P` = 0

• Group sparsity: 15 terms (also searched 5, 10, 15, 20 & 25 terms for convergence)

• Diffusion –> Laplacian operator
• Reduces 60 2nd order terms to 6: uxx, uzz, wxx, wzz, Txx, Tzz

• Can further remove 4 of these for each remaining equation
• For each equation, enforce coefficient symmetry between 2 remaining terms

• Incompressibility constraint (ux = -wz)
• Removes 15 possible terms from u` equation and 15 from w` equation

• Enforce coefficient symmetry between possible advection terms in each equation 

• Enforce coefficient symmetry between the scalar u` and w` equations due to vector 
nature of governing equation for U(u,w)

We are mimicking the ability of a ML method that could accept scalar and vector library 
components e.g. SPIDER recovers N-S equations in turbulent channel flow using a 12 

component scalar library and a 15 component vector library
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Sparse regression 
optimisation
• An optimisation algorithm allows 

you to robustly find the model*

• Stock options (no success yet)
• Sequential threshold least-squares 

• ConstrainedSR3 (more general)

• Constrained sparse Galerkin regression
(allows you to enforce physics e.g.
energy conservation)

• Success with mixed integer optimisation!
• Designed to find exact solutions, using efficient exploration

• Typically best when the problem involves discrete decisions

• We need to use a very small hyperparameter – perhaps turns discrete decision making off?
21

*Once you have the right data, right coordinates and the right model!
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Constrained result

• Ra 106

• U_1 : du/dx , W_2 : dw/dz, U_11 : d2u/dx2

• Error
• Refit model to training data
• Calculate mean-squared error
• p‘ equation error simply ignored

22/30

~10-3 = (Pr*Ra)-0.5
(Pr=1)
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ENFORCED



(Almost) unconstrained searching

• 104 terms

• Sparsity is constrained (could relax this and consider a range)
• Group sparsity of [u’,w’,P’,T’]=[3,4,0,2] to recover Euler equation

• Group sparsity of [5,6,0,4] to recover Navier-Stokes equation 

• Art/magic/sorcery is in the control volume tuning!

23



Almost unconstrained results

• Ra 106

• Same error calculation

• Error is slightly better than constrained fitting!

• Target error tolerance: 10-4

• With optimised control volume choice, convergent to random seed 
variation (i.e. repeat 100x you get correct result for >75%)
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Repeat at Ra 108

Once steady, Nusselt number varies in the range 30 to 80, in a transitional regime?
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Robust result again for constrained fitting

• Ra 108

• Very robust for a range of Divisions – control volume extent in space 
and time
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Unconstrained fitting

• Ra 108

• Divisions_x: 45 -> 1024/45 – 1/5 x-width of a roll.

• Probably more important that div_x/div_z ~ 4

• Divisions_t: 10. Approximately 1/5th of a free-fall period.

• Not yet robust or convergent
• Intent to try finer data Δt, as explored divisions, seeds and number of control 

volumes without robust success
27

Incompressibility swap

Error again better than contrained!



Ra 1010

Once steady, Nusselt number varies in the range 100 to 220, 
implying active convection with turbulence 28



Moving forwards toward transport terms

• Convergence at Ra 108 and 1010

• Moving from u,w,p,T to measuring means Rij, Fi, Q

• Initially “guided physics-informed discovery” looking for the Garaud et al. 
closure – narrow library space

• Keep the physics information, relax the guidance – increase the library

• Recall
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Moving forwards toward transport terms

• Convergence at Ra 108 and 1010 – probably publishable result in of itself

• Moving from u,w,p,T to measuring means Rij, Fi, Q

• Initially “guided physics-informed discovery” looking for the Garaud et al. 
closure – narrow library space

• Keep the physics, relax the guidance – increase the library

• Recall
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Let’s try and walk before we can run!



Thank you for listening

Any questions or comments?

• Neat idea? Towards terrestrial application: reduce the data, e.g. only 
velocity (PIV-measured) and temperature (IR camera-measured) but 
not pressure, and apply guided physics-informed discovery
• Great EPSRC idea in conjuction with experimental work – Sorby lab?

• Thanks to discussions with Phil Livermore!
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