Numerical simulation of cryogenic machining with CO₂

Applying expertise from the carbon capture and storage sector

Monday 15th January 2018, Nuclear AMRC, Sheffield

C J Wareing, S Van Loo, S A E G Falle and M Fairweather University of Leeds, Leeds, LS2 9JT, United Kingdom <u>C.J.Wareing@leeds.ac.uk</u> <u>S.VanLoo@leeds.ac.uk</u> <u>M.Fairweather@leeds.ac.uk</u>

My background...

- Research Fellow at the University of Leeds, interested in:
 - Computational fluid hydrodynamics and magnetohydrodynamics •
 - Multi-phase, particle-laden flows with complex equations of state ullet
- Applications in Astrophysics, Applied Maths, Chemical and Mechanical Engineering
 - Star formation, evolution and death
 - Hall/Electron MHD turbulence
 - Carbon capture and storage high pressure CO₂ transport pipelines •
 - Cryogenic machining with CO₂
- Industry collaboration though National Grid's COOLTRANS Project (2011-15) and 2 EU projects
- Currently, an ongoing collaborative effort with the Nuclear AMRC to understand the fundamental behaviour of CO₂ in cryogenic machining, through thermodynamics and simulations

Overview

Carbon capture and storage aims to capture CO_2 at emission from power source or other and store it, avoiding atmospheric release and climate effects.

- COOLTRANS National Grid carbon capture and storage research programme.
 - Required pragmatic quantified risk assessment (QRA) models
 - Robust source conditions for use in far-field CFD studies
- Leeds: near-field sonic dispersion of CO₂ from high pressure pipelines
 - Developed thermodynamic model and numerical method
 - Modelled venting, puncture and rupture releases to validate approach
 - Application to full-scale ruptures to establish risks for HSE approval and UK CCS competition
 - Measuring and modelling particle evolution in turbulent sonic CO₂ jets
- Collaboration with Nuclear AMRC applying the same model and method at smaller scales

- Adaptive, finite-volume grid algorithm with rectangular mesh
- Grid adaption achieved by successive overlaying of refined layers of computational mesh
 - For steep gradients in variables, e.g. at Mach shock, mesh more refined. Generation of fine grids in regions of high spatial and temporal variation
 - Conversely, coarser grids allowed where flow field is smooth
- k-ε turbulence model available, including compressibility correction
- Second-moment Reynolds stress turbulence model also available, including round-jet correction
- Solutions obtained for time-dependent, density-weighted equations
- Efficient, general-purpose shock-capturing, upwind, second-order-accurate Godunov numerical scheme with Harten, Lax, van Leer Riemann solver
- Compared to FLUENT, this method is considerably faster and able to model solid CO₂ (FLUENT uses the NIST REFPROP database, or GERG, which is limited to gas and liquid CO₂ above the triple point temp.)

Near-field dispersion numerical method

Expensive computations

• Require supercomputer for large-scale pipeline simulations.

• Desktop for small-scale simulations – e.g. cryogenic machining.

Note the axis units are in release diameters.

Adaptive mesh refinement grid mapped onto mean velocity predictions in the region of a Mach disc

Thermodynamic model

- Novel composite equation of state for pure CO₂ employing:
 - Peng-Robinson (1976) equation of state (EoS) in gas phase
 - Tabulated data derived from Span and Wagner (1996) EoS for liquid phase and vapour pressure. Span and Wagner underpins GERG/REFPROP.
 - Accurate solid CO₂ equation of state: Jager and Span (2012)
- Calculations undertaken using Helmholtz free energy in terms of

temperature and molar volume, as all ³⁰ other thermodynamic properties can be readily obtained from it

- Internal energy on saturation line
- T_{crit} marks critical temperature
- Triple point can be identified by steep connection between liquid and solid phases – latent heat of fusion

remperature in the near-field of the flow domain

Ideal, or Peng-Robinson EoSs alone, do not work!

Validation – venting a 25mm pipe

Further validation and application

(a) Data vs. model on 1m plane (c) Side puncture

Validation - Punctures

Wareing et al., Int. J. Greenhouse Gas Control, **29**, 231 (2014)

Ruptures – full scale results

Pipeline diameter, D=0.6 m

COSHER Project (Carbon Dioxide, Safety, Health & Environmental Risk), http://www.cosher.net/en/

Wareing et al., Int. J. Greenhouse Gas Control, 42, Paper 1: p701, Paper 2: p712 (2015)

Problem – how do the CO₂ snow particles behave? UNIVERSITY OF LEEDS

- Solution: Laboratory-scale experiments in a ventilated chamber
 - 20ml canister of liquid CO₂ pressurised to 68.9 bar at ambient temp
 - Connected to a nozzle at one end of a Perspex box 50x50x500mm
 - Two nozzles flush with inside of box: 0.5mm and 1.0mm in diameter (D)
 - Phase Doppler Particle Anemometry used to measure
 - particle sizes and velocities along the sonic release
 - Data obtained at 3D, 5D, 6D, 10D, 20D, 30D, 50D and 100D
 - Designed to mimic pipeline discharge
 - Experimental scale is very close to that of cryogenic machining!

Particle evolution model

- Motion of particles computed using Lagrangian particle tracker
- Viscous drag in the low Reynolds number regime included
- Turbulent shear agglomeration model
 - Reproduces observed agglomeration in the 1.0mm diameter case
- Particle mass changes according to

$$\frac{1}{m_p} \frac{\mathrm{d}m_p}{\mathrm{d}t} = \frac{\left[p_{\infty} - p_s(T_{\infty})\right]}{\tau_t p_s(T_{\infty})} \left[\mathrm{s}^{-1}\right]$$

Thus defining a thermal relaxation time

$$\tau_t = \frac{\rho_p r_p^2 L^2 w_v}{3\kappa R T_\infty^2} [s]$$

Fluid and particles two-way coupled through fluid-temperature dependent particle relaxation model

Particle results from simulation and experiment

Collaboration with the Nuclear AMRC

"The Nuclear AMRC wishes to gain more fundamental knowledge on the behaviour of multiphase CO₂ jets for the purpose of cooling machining processes"

- Phase 1
 - Deliverable: preliminary simulation of two nozzle geometries, one of which employing previous free-jet Leeds geometry
 - Fixed diameter and mass-flow
 - Simulation to extend to 30 nozzle diameters downstream
- Phase 2
 - Deliverable: 6 2D simulations with refinements from experiment. Variation of pipe pressure, nozzle shape and diameter. 1 3D simulation repeating the refined 2D base case.

Specification

- Early information from kick-off meeting:-
 - Gaseous CO₂ at P,T = 35bar, 20°C combines with liquid CO₂ at P,T = 65bar,-7°C approximately 1m from tool tip
 - Combination mechanism covered by NDA
 - Pipework from there to tool tip is not uniform
- Known nozzle diameter: 0.6mm. Mass-flow: 10 kg/hr
- Assume flow into tool is saturated equilibrium CO₂ thermodynamic condition closest to post-combination conditions. Hence, in 6mm pipe:
 Pressure, Temp, solid fraction = 2.9518e6 Pa, 267 K, 0.0725 kg/kg
- By Bernoulli, refined nozzle condition is:

Temp. = 249.47 K, Press. = 1.7558 Pa, solid fraction = 0.12911 kg/kg, Density = 86.443 kg/m³, Velocity = 188.20 m/s, mass-flux = 10 kg/hr

Complex nozzle geometry

Nozzle dimensions (Units: 1/10ths of a mm)

Imported via Autodesk 360 viewer: <u>https://a360.autodesk.com/viewer/#</u> Imported measurements in **black** and white. Inferred measurements in **red**.

Phase 1 non-equilibrium results

Phase 2

#	Description
1	Base case repeated from Phase 1. Standard D=0.6mm nozzle, full hex key, nozzle conditions derived from treating the pipe as a 'reservoir' with above conditions. Extension adding particles.
2	High pressure of 38bar in the pipeline. No particles.
3	Low pressure of 33bar in the pipeline. No particles.
4	Half-height hex key socket. No particles.
5	D=1.0mm standard shape nozzle. No particles.
6	D=0.2mm sharp plate nozzle. No particles.
7	Repeat of base case in 3D. No particles.

	Mass- flow	Temp.	Pres.	Density	Solid density	Vel.	CO ₂ fraction	Solid fraction	
	[kg/hr]	[K]	[Pa]	[kg/m³]	[kg/m³]	[m/s]	[kg/kg]	[kg/kg]	
1	42.96	244.24	20.053e5	57.02	1072	209.28	1.0	1.315e-3	
2	43.82	243.66	21.099e5	50.42	1075	206.76	1.0	1.781e-3	
3	51.93	244.81	18.397e5	61.69	1069	213.44	1.0	7.359e-4	
4	As (1)								
5	135.95	244.84	20.175e5	57.32	1069	209.71	1.0	3.493e-3	
6	5.409	243.87	20.046e5	57.11	1074	209.33	1.0	0.0e0	
7	As (1)								

Phase 2 results: variation of pressure

 Temperature distributions are nearly identical.

UNIVERSITY OF LEEDS

Phase 2 results: variation of pressure

Phase 2 results: hex-key height

- Narrower mixing region leads to lower amounts of solid CO₂ in the mixing region and evaporation sooner
- These results would suggest that a half-height hex key socket will result in lower amounts of solid CO₂ at the operating plane.

Phase 2: 3D simulation

- Nozzle conditions can be estimated from Bernoulli, and can be refined by experimental measurements of the flow in the pipe upstream from tool.
- Non-equilibrium effects are present solid flow is inertia-dominated
 - Over the region of interest, solid and gas flow are detached
 - Gas flow rapidly becomes 'hot' at ~ -20°C, solid particle flow is cold ~ -80°C
- Mach shock is around the size of the hex key socket in this D=0.6mm case
- Hex key acts to focus flow and increase solid fraction at 30 diameters
 - Lines present in close-up photography are likely to be a result of 'hex' key shape
- Nozzle simulations have shown solid fraction does not change through simulations to increase solid fraction, maximise condensed phase flow in supply line.
 - Phase 2 simulations have shown supply line pressure is important.
- A better model is required to explore this more accurately EPSRC research grant application

Grant proposal in progress, at an early stage

- EPSRC standard grant proposal, to examine:
 - Extended thermodynamic equation of state supercritical / MQL
 - Multi-fluid Direct Numerical Simulation flow scheme
 - Tuned fundamental particle experiments with Phase Doppler Particle Anemometry
 - Impinging jets and heat transfer
 - Outputs: optimal use and refined machine and tool design
- Various opportunities for involvement exist
 - Advisory Board membership, guiding research questions
 - Provision of existing data or relevant facilities
 - Full collaboration, e.g. a range experiments for validation purposes

We invite people to talk to us about becoming involved