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Summary

We present results of DNS of turbulent fluid dynamics coupled with machine learning techniques to derive new equations for the evolution of transport in 

turbulent flows. We examine Rayleigh-Bénard convective turbulence with the aim to learn the statistics of unresolved scales for turbulent 

parameterization. Following the approach of Garaud et al. 2010 [1] in order to perform a comparison to their result, we seek a closure model for the 

transport of entropy and momentum intended for application to rotating stellar convective regions. We use the Dedalus framework [2,3] for spectrally 

solving differential equations to generate an extended time-series of two-dimensional DNS data at Rayleigh numbers of 106, 108 and 1010. We then use 

the data-driven Sparse Identification of Nonlinear Dynamics (SINDy) machine-learning algorithm [4] to discover the form of the governing equations  

paying particular attention to capturing any difference between the bulk and boundary layers. In future work, we will consider different approaches to the 

machine-learning question (e.g. SPIDER and Bayesian methods) and seek to confirm the turbulence closure coefficients of Garaud et al. 2010 as well 

as consider differences in the coefficients relating to different regions of the flow.

 Applying SINDy with constraints [(1) restrictions on the number of diffusive

terms, (2) the incompressibility condition Eq.3, (3) vector constraints and

(4) symmetries between equations] and mixed integer optimisation [6] can

robustly identify the governing equations (1) and (2) up to Re = 1010.

 Further, applying SINDy with open fitting to all 104 possible terms and careful

choice of the machine learning parameters, can also recover the correct for

of the governing equations (1) and (2), e.g.:-

Re: 108. Nx, Nz = 1024, 384. Region x:0-1024, z:0-150

Divx = 55, Divz = 12, Divt = 10. 300 subdomains

u1' = 0.00010069 d
2u1/dz

2 + -1.00018036 dp/dx + 0.00009931 d2u1/dx
2

+ -1.00035329 u1.du2/dz + -1.00006506 u1.du1/dx

u2' = 1.00084245 Ө + -1.00082124 dp/dz + 0.00009667 d2u2/dz
2

+ 0.00010304 d2u2/dx
2 + -1.00084795 u2.du2/dz

+ -1.00092491 u2.du1/dx

Ө' = 0.00009887 d2Ө/dz2 + 0.00010980 d2Ө/dx2

+ -1.00107256 Ө.du2/dz + -1.00132746 Ө.du1/dx

 It should be noted that this open fitting is extremely sensitive to the data

selection, the random initialisation and the size and number of

subdomains, leading to difficulties in ensuring a converged machine-

learning process.

Acknowledgements: This project has received funding from

the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme

(Grant agreement No. D5S-DLV-786780). The calculations

for this paper were performed on the University of Leeds

ARC4 facility, hosted and enabled through the ARC HPC

resources and support team at the University of Leeds, to

whom we extend our grateful thanks.

References: 

[1] Garaud, Ogilvie, Miller & Stellmach, MNRAS 407, 2451-2467, 2010.

[2] Burns, Vasil, Oishi, Lecoanet & Brown, Physical Rev. Res. 2 (2) 023068, 2020.

[3] http://dedalus-project.org

[4] Brunton, Proctor & Kutz, PNAS 113 (15), 3932-3937, 2016.

[5] Ascher, Ruuth, Spiteri, Applied Numerical Mathematics 25 (2-3), 151-167, 1997.

[6] Gurobi Optimization LLC, Gurobi Optimiser Reference Manual 2023; v. 9.1.0

 Snapshot at t=48.5 of resolved 2D convection, Ra = 1010. 

Physical Model & Governing Equations

 2D horizontally-periodic Rayleigh-Bénard convection.

 Non-dimensionalised using the box height and freefall time.

 Rayleigh numbers, R = 106, 108 & 1010. Prandtl number, P = 1.

 Stress-free boundary condition 

at top z = 0 and bottom z = 1.

 Boussinesq approximation.

 Temperature Ө(z=0)=1, Ө(z=1)=0.

Numerical technique

 Dedalus v3 flexible framework for solving PDEs using spectral methods [2].

 Open-source, widely-used, well supported [3].

 1024 real space Fourier points (Nx) in the x direction, Lx = 4.

 384 real space Chebyshev points (Nz) in the z direction, Lz = 1.

 RK443 - 3rd-order, 4-stage DIRK+ERK timestepping scheme [5].

Theoretical model
 Garaud et al. [1] retained exact forms of the left-hand sides, developing

equations for the triple correlation terms and proposed simple closures for

the right-hand sides by splitting mean and fluctuating parts ui = ui + ui’ with

ui’ = 0, of the form:

where Rij = ui’uj’, Fi = Ө’ui’ and Q = Ө’2.

 Assuming variation only with z, they obtain a set of coefficients for 3D

Rayleigh-Bénard convection as follows:

Results: recovering the governing equations
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SINDy
 Discovering governing equations from data by Sparse Identification of

Nonlinear Dynamical (SINDy) systems [4]

 Figure 1 from Brunton et al. [4] gives a demonstrative overview:-
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Next step: turbulent transport terms
 Using integrated fluxes derived from the data

for the mean and fluctuating components of 

the Garaud et al. method (i.e. temperature 

Ө(z), x-velocity ū1 (z), z-velocity, ū2 (z), 

R(z) (= ΣiRii) for i = 1,2, Rij (z) for i,j = 1,2, 

Fi (z); i = 1,2, Q(z)), we will apply the 

converged machine learning method for 

obtaining the governing equations to 

recovering values for the Garaud coefficients

and examining variations across the flow.
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