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Summary

We present preliminary results of DNS of turbulent fluid dynamics coupled with machine learning techniques to derive new equations for the evolution of 

transport in turbulent flows. We examine Rayleigh-Bénard convective turbulence with the aim to learn the statistics of unresolved scales for turbulent 

parameterization. Following the approach of Garaud et al. 2010 [1] in order to perform a comparison to their result, we seek a closure model for the 

transport of entropy and momentum intended for application to rotating stellar convective regions. We use the Dedalus framework [2,3] for spectrally 

solving differential equations to generate an extended time-series of two-dimensional DNS data at a Rayleigh number of 1010. We then use the data-

driven Sparse Identification of Nonlinear Dynamics (SINDy) algorithm [4] to discover the form of the triple correlation terms from the data, ensuring we 

capture any difference between the bulk and boundary layers. In future work, we intend to apply the same SINDy method to convective rotating 

turbulence, mean flows and magnetic fields. Further, we intend to repeat the analysis using Bayesian machine learning methods and compare the 

results to those obtained with SINDy.

 Applying SINDy with judicious constraints can identify the correct terms in the

equations governing 2D Rayleigh-Bénard convection, e.g.:-

 Preliminary coefficients are different to (7).

C1 ~ 0.05, C2 ~ 0.08, C6 ~ -0.1, C7 ~ 0.2, Cν ~ 6e3, Cνκ ~ 2e4, Cκ ~ 4e4

 Future work will look to improve the regression fit and explore the differences.
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 Snapshot at t=48.5 of resolved 2D convection, Ra = 1010. 

Physical Model & Governing Equations

 2D horizontally-periodic Rayleigh-Bénard convection.

 Non-dimensionalised using the box height and freefall time.

 Rayleigh numbers, R = 106, 108 & 1010. Prandtl number, P = 1.

 Stress-free boundary condition 

at top z = 0 and bottom z = 1.

 Boussinesq approximation.

 Temperature Ө(z=0)=1, Ө(z=1)=0.

Numerical technique

 Dedalus v3 flexible framework for solving PDEs using spectral methods [2].

 Open-source, widely-used, well supported [3].

 1024 real space Fourier points (Nx) in the x direction, Lx = 4.

 384 real space Chebyshev points (Nz) in the z direction, Lz = 1.

 RK443 - 3rd-order, 4-stage DIRK+ERK timestepping scheme [5].
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Integrated fluxes
 Integrating along x, we obtain time series of averaged data for:-

 Temperature, Ө(z)

 x-velocity, ūi (z)

 z-velocity, ūj (z)

 R(z) (= ΣiRii); i = 1,2

 Rij (z); i,j = 1,2

 Fi (z); i = 1,2

 Q(z)
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Theoretical model
 Garaud et al. [1] retained exact forms of the left-hand sides, developing

equations for the triple correlation terms and proposed simple closures for

the right-hand sides by splitting mean and fluctuating parts ui = ui + ui’ with

ui’ = 0, of the form:

where Rij = ui’uj’, Fi = Ө’ui’ and Q = Ө’2.

 Assuming variation only with z, they obtain a set of coefficients for 3D

Rayleigh-Bénard convection as follows:

Concluding remarks
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SINDy
 Discovering governing equations from data by Sparse Identification of

Nonlinear Dynamical (SINDy) systems [4]

 Figure 1 from Brunton et al. [4] gives a demonstrative overview:-
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