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Summary

results to those obtained with SINDy.

Physical Model & Governing Equations

2D horizontally-periodic Rayleigh-Bénard convection.
Non-dimensionalised using the box height and freefall time.
Rayleigh numbers, R = 10°, 108 & 10%°. Prandtl number, P = 1.
Stress-free boundary condition M -V = Vo +ef;+\/EstL
at top z = 0 and bottom z = 1. 85” R
Boussinesq approximation.

Temperature ©(z=0)=1, ©6(z=1)=0.
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Numerical technique

Dedalus v3 flexible framework for solving PDESs using spectral methods [2].
Open-source, widely-used, well supported [3].

1024 real space Fourier points (N,) in the x direction, L, = 4.

384 real space Chebyshev points (N,) in the z direction, L, = 1.

RK443 - 3"-order, 4-stage DIRK+ERK timestepping scheme [5].
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O Snapshot at t=48.5 of resolved 2D convection, Ra = 1010,

Theoretical model
d Garaud et al. [1] retained exact forms of the left-hand sides, developing
equations for the triple correlation terms and proposed simple closures for
the right-hand sides by splitting mean and fluctuating parts u, = u, + u,” with
u.’ = 0, of the form:
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where R; = u;’u/’, F;= ©u;and Q = 6~
d Assumlng varlatlon onIy with z, they obtain a set of coefficients for 3D
Rayleigh-Bénard convection as follows:

C,~04, Cy~06, C.=2%0.2.
=12+1, Ce=14+0.1,

=605 C;=144+0.1.
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We present preliminary results of DNS of turbulent fluid dynamics coupled with machine learning techniques to derive new equations for the evolution of
transport in turbulent flows. We examine Rayleigh-Bénard convective turbulence with the aim to learn the statistics of unresolved scales for turbulent
parameterization. Following the approach of Garaud et al. 2010 [1] in order to perform a comparison to their result, we seek a closure model for the
transport of entropy and momentum intended for application to rotating stellar convective regions. We use the Dedalus framework [2,3] for spectrally
solving differential equations to generate an extended time-series of two-dimensional DNS data at a Rayleigh number of 101°, We then use the data-
driven Sparse Identification of Nonlinear Dynamics (SINDy) algorithm [4] to discover the form of the triple correlation terms from the data, ensuring we
capture any difference between the bulk and boundary layers. In future work, we intend to apply the same SINDy method to convective rotating
turbulence, mean flows and magnetic fields. Further, we intend to repeat the analysis using Bayesian machine learning methods and compare the

Integrated fluxes
O Integrating along x, we obtain time series of averaged data for:-

O Temperature, 6(z) Eq.(4) R Eq.(5) F,
d x-velocity, G (z)
d z-velocity, G;(2)
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SINDy

 Discovering governing equations from data by Sparse Identification of
Nonlinear Dynamical (SINDy) systems [4]
 Figure 1 from Brunton et al. [4] glves a demonstratlve overview:-
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Fig. 1. Schematic of the SINDy algorithm, demonstrated on the Lorenz equations. Data are collected from the system, including a time history of the states X
and derivatives X; the assumption of having X is relaxed later. Next, a library of nonlinear functions of the states, ®(X), is constructed. This nonlinear feature
library is used to find the fewest terms needed to satisfy X= @(X)E. The few entries in the vectors of E, solved for by sparse regression, denote the relevant
terms in the right-hand side of the dynamics. Parameter values are 6=10,/=8/3,p=28, [X[),}"D,ED::'T = B,?,E?}T. The trajectory on the Lorenz attractor is
colored by the adaptive time step required, with red indicating a smaller time step.

Concluding remarks
d  Applying SINDy with judicious constraints can identify the correct terms in the
eguations governing 2D Rayleigh-Bénard convection, e.g.:-

Noiseless weak fit:

(R)' = -0.046027 R + 0.000010 R 11 + 0.052413 R"3/2 + 2.000000 Fz + -2.000000 R22Wbar 1 + -2.000000 R12Ubar 1 + -1.000000 WharR 1
(R11)' = 0.029194 R11R"1/2 + -0.005822 R~3/2 + -2.000000 R12Ubar 1 + -1.000000 WbarR1l 1

(R12)' = -0.068491 R12 + -0.009120 R12R"1/2 + 1.000000 Fx + -1.000000 R22Ubar 1 + -1.000000 R12Wbar 1 + -1.000000 WbarR12 1
(R22)' = 0.002815 R22 + -0.027741 R22R*1/2 + 2.000000 Fz + -2.000000 R22Wbar 1 + -1.000000 WbarR22 1

(Fx)' = -0.138289 Fx + 0.000010 Fx 11 + 0.133954 FxR~1/2 + -1.000000 FzUbar 1 + -1.000000 R12Temp 1 + -1.000000 WbarFx 1

(Fz)' = 0.312619 Fz + 0.070370 FzR™1/2 + 1.000000 Q + -1.000000 FzWbar 1 + -1.000000 WbarFz 1 + -1.000000 R22Temp 1
(Q)' = 0.402013 Q + 0.000010 Q 11 + -0.233446 QR"1/2 + -2.000000 FzTemp 1 + -1.000000 WbarQ 1

d Preliminary coefficients are different to (7).
C,~0.05C,~0.08,C,~-0.1,C,~0.2,C,~6e3,C,, ~2e4,C, ~4e4
Future work will look to improve the regression fit and explore the differences.
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